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Background: applications of transformers
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Our methodology for theoretical understanding

• Real data are messy and complex 
• Language data: semantics (meaning), syntax (grammar), ……
• All these aspects affect the behavior of trained models 

• To study them in more formal manner 
• Focus on one of these aspects by studying some simple synthetic setting
• Examples: topic model, regular languages, probabilistic context-free grammars, …
• Ablate away some other aspects of language 
• Benefits: control variables, single out each factor
• Agenda of this line of research: progressively study more realistic data distributions

• By contrast: empirical probing works
• Intuitive, but difficult to state the results formally
• No canonical way to probe especially for attention 3



41. Images taken from: Sébastien Bubeck et al, 2023, Sparks of AGI: Early experiments with GPT-4
2. Bingbin Liu et al, 2023, Transformers learn shortcuts to automata

Goal: to understand the 
empirical effectiveness 
of transformers1

Many prior theoretical works 
• Turing completeness 

• Pérez et al. 2021
• Universal approximation 

• Yun et al. 2020
• Can represent some algorithms 

• Yao et al. 2021

The missing link:
What is actually learned
through optimization?

?

But transformers can also 
learn “shortcuts” even on 
simpler tasks 
(Liu et al. 20232)

Characterizing the optimization process is crucial 
for theoretical understanding of transformers



Overview of our results
• Data: topic modeling: Latent Dirichlet allocation (LDA)

• Captures a simple type of semantics (based on co-occurrence) in natural languages 

• Model architecture: a single-layer transformer (no FFN, no layer norm)
• Pre-training task: masked language modeling
• Our analysis involves a combination of training process and loss optima
• Main result 1 (optimal word embedding, informal) 

• If everything other than embedding layer is frozen
• The inner product of the embeddings of a pair of words is larger when the words belong to 

the same topic, and smaller when they belong to different topics

• Main result 2 (optimal self-attention, informal)
• If token embeddings are frozen to be one-hot vectors
• The attention score between a pair of words is larger when the words belong to the same 

topic, and smaller when they belong to different topics

• Theory is also predictive of multi-layer multi-head transformers trained on 
Wikipedia data
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Data: topic model

• “Topic” is a simple aspect of semantics in natural language1

• document = mixture of topics (bag of words, i.e. no word order)
• topic = probability distribution of words

6
1. David Blei, et al, 2003, Latent Dirichlet Allocation (LDA)
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2. Figure idea credit to Sanjeev Arora’s talk in 2014



Data: topic model

• T topics: {1, …, T}, each containing v words
• Disjoint topics: no overlapping words

• dataset = collection of documents
• document = sequence of words !!, … , !", generated by
• First uniformly randomly choosing U distinct topics from {1, …, T}
• For each n in 1…N, generate (V by

• Uniformly randomly choosing one of these D topics 
• Uniformly randomly choosing one word of this chosen topic

• Our theory studies the long-doc regime: V → ∞

• This is a special case of a Latent Dirichlet Allocation (LDA) model
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Training loss: masked language modeling

• Original: Andrew Carnegie famously said, "My heart is in the work.”
• Masked: Andrew Carnegie famously [MASK], "My heart is apple the [MASK].”
• Goal: masked sentence -> model -> original sentence
• More formally, given original document ! = !!, … , !"
• Select a constant proportion %# (e.g. 15%) of masked positions
• Masked document(! = ("′, … , (#′

• If position i is not select above, then ($
! = ($

• If position i is selected, then ($
! can be 

• The correct word $! with probability %"
• A random word with probability %#
• The [MASK] token with probability 1 − %" − %#
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Training loss: masked language modeling

• Original: Andrew Carnegie famously said, "My heart is in the work.”
• Masked: Andrew Carnegie famously [MASK], "My heart is apple the [MASK].”
• Predicted: Andrew ? famously ?, "My heart is ? the ?.”
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• Given input representation & ∈ ℝ(×"

) & = **+,( *-& +,,-.,/0.(&) + 4*+,( ∈ ℝ.×"

• +,,-.,/0.(&) is the core of the architecture 
• **+,( ∈ ℝ.×( decoder weights
• 4*+,( ∈ ℝ. decoder biases

Model architecture: single-layer transformer
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• %: vocabulary size 
• &: embedding dimension
• (usually: & < %)
• (: sequence length



Model architecture: attention 

1. Figure credit to Andrej Risteski’s course: CMU 10707 - Deep Learning (2020)
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Model architecture: attention 

1. Figure credit to Andrej Risteski’s course: CMU 10707 - Deep Learning (2020)



Model architecture: attention 

1. Figure credit to Jay Alammar’s blog post: https://jalammar.github.io/illustrated-transformer/



• Embedding layer
• Recall: original sentence 1 ∈ ℝ)×#

• Column 1+ is one-hot: the word at position j
• Masked sentence 41 ∈ ℝ)×#, with embedding 5
• 5 = 6, 41 ∈ ℝ-×#

• 6, ∈ ℝ-×) is the embedding matrix 
• For each word in 1…D
• Pick the corresponding column in /$

• Get a d-dimensional word embedding
• Weight tie with 6./0- (common implementation1)

• ) 56 = *0 1 *-*0 56 +,,-.,/0.( 56) + 4*+,( ∈ ℝ.×"

Model architecture: single-layer transformer
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• %: vocabulary size 
• &: embedding dimension
• (usually: & < %)
• (: sequence length
• 1 ∈ ℝ!×#

• 4$%&! ∈ ℝ'×!

• 5$%&! ∈ ℝ'

6 78 = 4$%&! 4(4) 78 :;;<( 78) + 5$%&!

1. Ofir Press and Lior Wolf. Using the output embedding to improve language models. 2017



• ) 56 = *0 1 *-*0 56 +,,.( 56) + 4*+,(

• Topic structure can be encoded in many 
places
• Embedding layer 6,

• Self-attention 6@, 7889( 41)
• Our simplification: study the above two cases 

separately
• Main result 1 (word embedding) 
• Main result 2 (self-attention)

Model architecture: single-layer transformer
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• %: vocabulary size 
• &: embedding dimension
• (usually: & < %)
• (: sequence length
• 1 ∈ ℝ!×#

• 4$%&! ∈ ℝ'×!

• 5$%&! ∈ ℝ'

6 78 = 4$%&! 4(4) 78 :;;<( 78) + 5$%&!



Result: embeddings encode topic structure
• Theorem (informal): when fixing +,,.( 56)

to uniform attention and *- to identity, 
the optimal embedding layer *0 satisfies

• 7 ≔ *01*0 is block-wise
• 723 is larger when words i and j belong to 

the same topic
• ≈ their embeddings are more similar

• 723 is smaller when words i and j belong to 
the different topics
• ≈ their embeddings are more different

• The avg difference (same topic - diff topic)
1

:(1 − 1 − %4 %#)
15

• %: vocabulary size 
• &: embedding dimension
• (usually: & < %)
• (: sequence length
• 1 ∈ ℝ!×#

• 4$%&! ∈ ℝ'×!

• 5$%&! ∈ ℝ'

• A: number of words in each topic
• B*, B+ , B%: controls masking probabilities

6 78 = 4) , 4(4) 78 :;;<( 78) + 5$%&!



Result: embeddings encode topic structure
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• The dot product of the embeddings of two 
word is
• larger if the two words belong to the same 

topic, and 
• smaller if they belong to different topics

• In this figure, the nine words fall into three 
topics: 
• Animals: frog, toad, lizard
• Musicians: mozart, beethoven, schubert
• Mathematics: algebra, arithmetic, calculus



Result: embeddings encode topic structure
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• The dot product of the embeddings of 
two word is
• larger if the two words belong to the 

same topic, and 
• smaller if they belong to different topics

• Same holds for model trained on 
synthetic data generated by LDA
• 10 topics
• 10 words in each topic
• Theory: fix 7889( 41) and 6@

• This figure: all components are trained
• Block pattern depends on optimization 

algorithm and loss function
• Can be less clean, see Figure 1 in our paper



Next step: results for other layers

• Question: what is the role of other layers in learning topic structures?
• In particular, what does the attention layer learn?
• We isolate the roles of embeddings and attention by considering the 

following question
• What does the attention layer learn without the help of embeddings?
• Namely, we freeze the embedding to be one-hot
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The two-stage optimization process

• However, end-to-end gradient descent learning dynamics of 
transformers involves very complicated calculations
• Can we avoid them but still gain insights into the optimization process?
• Empirical observation 
• With careful initialization
• When all weights are jointly trained (using SGD or Adam) 
• The optimization process can be approximately broken down into two stages

19

: 5 = 6./0- 6@5 ;
6C5 D 6E5

<F
+ =./0-



Observation: two-stage optimization process
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• In Stage 1 (steps 0-400)
• | 6C |G, | 6

E |G ≈ 0

• | 6@ |G increases significantly
• Our simplification for theory: freeze 6C and 
6E to 0

• In Stage 2 (steps 400-1000),
• | 6C |G, | 6

E |G start increasing significantly
• while | 6@ |G stays relatively flat
• Note: 6@ does not stop changing
• Our simplification for theory: freeze 6@ to the 

Stage 1 optima above



Observation: two-stage optimization process
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Intuition: two-stage optimization process
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• <(*5 ,*6 ,*-) ≔ *-& +,,.(&)

• +,,. & = =
7!8 " 7#8

($
• ;: softmax (each column sums up to 1)

• ∇7!(<) contains the term *6

• Initialization: 6C ≈ 0,6E ≈ 0

• So∇H!(A) ≈ 0

• So	6C stays	≈ 0 for	a	long	time

• Similar	for	6E

• Does not apply to *-:∇7%(<)contains +,,. &
• 7889(5) is not ≈ 0

• %: vocabulary size 
• &: embedding dimension
• (usually: & < %)
• (: sequence length
• 1 = 4) 78 ∈ ℝ!×#

• 4$%&! ∈ ℝ'×!

• 5$%&! ∈ ℝ'

• A: number of words in each topic
• B*, B+ , B%: controls masking probabilities

6 78 = 4) , 4(4) 78 :;;<( 78) + 5$%&!



The two-stage optimization process

• However, end-to-end gradient descent learning dynamics of 
transformers involves very complicated calculations
• Can we avoid them but still gain insights into the optimization process?
• Empirical observation 
• With careful initialization
• When all weights are jointly trained (using SGD or Adam) 
• The optimization process can be approximately broken down into two stages

• Our approach
• For Stage 1 (convex), we characterize the optima, which also implies 

guarantees for training dynamics
• For Stage 2 (non-convex), we only characterize the optima (no guarantee for 

training dynamics)
23



Stage 1 result: !! encodes topic structure
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• Theorem (informal): with one-hot 
embedding, fixing +,,.( 56) to uniform 
attention, the optimal *- is block-wise
• *-23 is larger when words i and j belong 

to the same topic
• *-23 is smaller when words i and j belong 

to the different topics
• The avg difference (same topic - diff topic)

1
:(1 − 1 − %4 %#)

• Weight decay makes the optima unique
• w/o weight decay: not strongly convex

• %: vocabulary size 
• &: embedding dimension
• (usually: & < %)
• (: sequence length
• 1 ∈ ℝ!×#

• 4$%&! ∈ ℝ'×!

• 5$%&! ∈ ℝ'

• A: number of words in each topic
• B*, B+ , B%: controls masking probabilities

6 78 = 4) , 4(4) 78 :;;<( 78) + 5$%&!



• Q: Fixing *- at Stage 1 optima, what is the 
optimal +,,. & ?

• +,,. & = =
7!8 " 7#8

($
• =:ℝ"×" → 0,1 "×": column-wise softmax

• = + 9: =
;<=(?&')

∑()*+ ;<=(?(')
• The “attention score” that word j pays to word I

• Q: Do words typically pay more attention to 
other words of the same topic?
• i.e. is ; 7 $+ typically larger 
• when topic(wi) = topic(wj)
• or when topic(wi) ≠ topic(wj) ?

Stage 2 question: behavior of attention
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• 1 ∈ ℝ!×#

• 4$%&! ∈ ℝ'×!

• 5$%&! ∈ ℝ'

6 78 = 4) , 4(4) 78 :;;<( 78) + 5$%&!



• Masked document ! = !!, … , !"
• +,,. 6 9: is	the	attention	that	!: pays	to	!9
• +,,. 6 9: =

• Q" if ($ = (+
• QI if ($ ≠ (+ but topic(($) = topic((+)

• QJ if topic ($ ≠ topic((+)

• Q: Are M! and MB greater than MC in the optimal attention?
• Let N ≔ 4,

4-
, and O ≔ 4*

4-
• Q: Are N and O greater than 1 in the optimal attention?

Stage 2 simplification: tying attention scores
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Stage 2 result: attention encodes topic structure
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• Theorem (informal): with one-hot embedding, 
when fixing !! at stage 1 optima, 
• the optimal attention scores are topic-wise

• "#$" " + $
" $ ∈ ('$(, '%*)

• Intuition: 
• !: number of words per topic
• ": number of topics per document
• #: total number of topics

• !"#
! $ + #

! & avg same-topic / diff-topic

• “avg” in the sense of frequency
• '#, '$ are constants
• More topics per doc (i.e. larger ") =>

• each word needs to focus more on other same-topic words 

• :;;< 8 -. =
• K/ if L- = L.
• K0 if L- ≠ L. but topic(L-) =
topic(L.)

• K1 if topic L- ≠ topic(L.)
• S ≔

+!
+"

(same-topic-diff-word attn / diff-
topic attn)

• U ≔
+#
+"

(same-word attn / diff-topic attn)



Experiment setting on Wikipedia1 dataset
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• Topic model: run online LDA2 for 6 passes
• Ambiguity filtering 

• Theory (synthetic setting): topics don’t overlap, i.e. each word belongs to 1 topic
• Experiment

• Remove “stop tokens”
• For each topic, keep the “most representative words”
• i.e. 0.05%, 0.1%, or 0.2% of all words with highest P(word | this topic) in the fitted LDA
• Will show results when enforcing no overlap between topics (≈ theory)
• Also, results when topics can overlap (≠ theory)

• Transformer models
• Pre-trained Bert (closest to theoretical setting)
• Pre-trained Albert, Bart, Electra, Roberta (≠ theory)
• Randomly-initialized Bert (expect no topic structure)

1. Wikimedia Foundation. URL https://dumps.wikimedia.org.   2. Matthew Hoffman et al. Online Learning for Latent Dirichlet Allocation. 2010.



Experiment result on Wikipedia dataset
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topics 
don’t 
overlap
(≈ theory)



Experiment result on Wikipedia dataset
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topics can 
overlap
(≠ theory)



Interesting future directions
• Analyzing optimization beyond the two-stage 

assumption
• Two stage: simplified the early optimization process
• Learning of (simple) topic structure: ✅
• Other finer-grained data properties: ❓
• What happens after this early process: ❓
• Two-stage phenomenon: sensitive to hyper-params 
• Common default hyperparameters: not visibly two-stage
• Interaction between different components (jointly trained): ❓

• Apply similar methodology to other distributions
• Topic model: one aspect of semantics: ✅
• Other aspects of semantics: ❓
• Syntax: ❓
• Ongoing work: the Dyck grammar, coming soon! 31



Summary
• Data: topic modeling: Latent Dirichlet allocation (LDA)
• Model architecture: a single-layer transformer (no FFN, no layer norm)
• Pre-training task: masked language modeling
• Analyzing optimization process
• The early training process can be approximately broken down into two stages
• Stage 1 is convex, stage 2 is not 
• We characterize the optima of the training objective in each stage 
• Since stage 1 is convex => training dynamics convergence guarantee for stage 1
• These optima intuitively captures the topic structures in the data distribution

• Theory is also predictive of multi-layer multi-head transformers trained on 
Wikipedia data
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