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Background: applications of transformers
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Our methodology for theoretical understanding

e Real data are messy and complex
e Language data: semantics (meaning), syntax (grammar), ......
* All these aspects affect the behavior of trained models

* To study them in more formal manner
e Focus on one of these aspects by studying some simple synthetic setting
* Examples: topic model, regular languages, probabilistic context-free grammars, ...
* Ablate away some other aspects of language
* Benefits: control variables, single out each factor
* Agenda of this line of research: progressively study more realistic data distributions

* By contrast: empirical probing works
* |ntuitive, but difficult to state the results formally
* No canonical way to probe especially for attention 3



Characterizing the optimization process is crucial
for theoretical understanding of transformers

Many prior theoretical works GPT-4:
* Turing completeness class Solution(object):
o Pérez et al 2021 def numberOfPaths(self, grid, k):

. . . : e pgrid: List[List[int]] ’
 Universal approximation > ope br ame

* Yunetal. 2020 3 .
* Canrepresent some algorithms ~ * v iear a =
e Yaoetal 2021 . feief(l;fé?ensmns o the - -
n = len(grid[0])
But transformers can also .

,, . The missing link: Goal: to understand the
learn “shortcuts” even on . . _
simpler tasks What is actually learned empirical effectiveness
(Liu et al. 20232) through optimization? of transformers?

1. Images taken from: Sébastien Bubeck et al, 2023, Sparks of AGI: Early experiments with GPT-4 4

2. Bingbin Liu et al, 2023, Transformers learn shortcuts to automata



Overview of our results

e Data: topic modeling: Latent Dirichlet allocation (LDA)
e Captures a simple type of semantics (based on co-occurrence) in natural languages

 Model architecture: a single-layer transformer (no FFN, no layer norm)
* Pre-training task: masked language modeling
e Our analysis involves a combination of training process and loss optima

* Main result 1 (optimal word embedding, informal)
* |f everything other than embedding layer is frozen

 The inner product of the embeddings of a pair of words is larger when the words belong to
the same topic, and smaller when they belong to different topics

* Main result 2 (optimal self-attention, informal)

 |f token embeddings are frozen to be one-hot vectors

e The attention score between a pair of words is larger when the words belong to the same
topic, and smaller when they belong to different topics

* Theory is also predictive of multi-layer multi-head transformers trained on
Wikipedia data



Data: topic model

* “Topic” is a simple aspect of semantics in natural language?

* document = mixture of topics (bag of words, i.e. no word order)
 topic = probability distribution of words

- N - N - N
ski 3 3% 0
trail 5 6% 0
ice 1 1% 0.1%
sun 2 = 0.7 1% + 0.2 4% +
stars 1 0.1% 5% .,
transformer 0 A 0 2 0

jl poc
-

1. David Blei, et al, 2003, Latent Dirichlet Allocation (LDA) 2. Figure idea credit to Sanjeev Arora’s talk in 2014



Data: topic model

e T topics: {1, ..., T}, each containing v words
e Disjoint topics: no overlapping words

e dataset = collection of documents

* document = sequence of words wy, ..., Wy, generated by
e First uniformly randomly choosing 7 distinct topics from {1, ..., T}

* Foreach nin 1..N, generate w,, by

e Uniformly randomly choosing one of these T topics
e Uniformly randomly choosing one word of this chosen topic

* Our theory studies the long-doc regime: N = oo

* This is a special case of a Latent Dirichlet Allocation (LDA) model
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Training loss: masked language modeling

 Original: Andrew Carnegie famously said, "My heart is in the work.”
* Masked: Andrew Carnegie famously [MASK], "My heart is apple the [MASK].”
* Goal: masked sentence -> model -> original sentence

* More formally, given original document w = wy, ..., wy

* Select a constant proportion p,, (e.g. 15%) of masked positions
* Masked documentw' = wy/, ..., wy'
* If position i is not select above, then w; = w;

* If position i is selected, then w; can be
* The correct word w; with probability p,
* A random word with probability p,
* The [MASK] token with probability 1 — p. — p;



Training loss: masked language modeling

e Original: Andrew[Carnegie]famoust said, "My heart is in the work.”
 Masked: Andrew [Carnegie/famously [MASK], "My heart is apple the [MASK].”
* Predicted: Andrewfamously ?, "My heartis ? the ?.”

/Carnegie 0.05\

label y =iCarnegieJ
Webber 0.09
Ng 0.11 !
prediction § = Jackson 0.08 > loss at that position [(9, )
Johnson  0.08 l
training loss ), [(¥, y) for all selected positions

. / 8



Model architecture: single-layer transtormer

e Given input representation Z € R2*N

f(Z) = wpred(WVZ) Attention(Z) + bPre? € RP*N

» Attention(Z) is the core of the architecture
o WWPred ¢ RP*4 decoder weights
e pP7ed € RP decoder biases

 D:vocabulary size

* d:embedding dimension
e (usually:d < D)
 N:sequence length




Model architecture: attention

Intuition for attention comes from databases: a key operation is given a
query, find the relevant key, and lookup the corresponding value.

Value

Query: “Countries”

similar key

Return
corresponding value

1. Figure credit to Andrej Risteski’s course: CMU 10707 - Deep Learning (2020)



Model architecture: attention

A more “differentiable” variant of this:

[Attention(q, K,V) = z similarity(q, K;)V; }
./ \ i N\
N\
Vector Matricesw/ rows  Linear combination of
keys/values “most similar” values

The simplest notion of similarity: inner product.

{ Attention(q,K,V) = Z softmax({q, K;))V;

. /
Produces distribution Produces convex
over keys combination of values

Multiple queries combined in matrix Q: [ Attention(Q, K, V) = softmax(QKT)V J

1. Figure credit to Andrej Risteski’s course: CMU 10707 - Deep Learning (2020)



Model architecture: attention

Layer:| 5 §| Attention:| Input - Input &

The_ The_
animal_ animal_
didn_ didn_
t_ t
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ St
was_ was_
too_ too_
tire tire
d d

1. Figure credit to Jay Alammar’s blog post: https://jalammar.github.io/illustrated-transformer/



Model architecture: single-layer transtormer

° Embeddmg |ayer . D:vocabulgry si;e |
o DXN * d: embedding dimension
e Recall: original sentence X € R e (usually: d < D)
* Column X; is one-hot: the word at position * NV:sequence length
_ e 7 E RdXN
 Masked sentence X € RP*N, with embedding Z . ppred ¢ RDXd
« 7 =WEX € RN « bPred ¢ RP
o WE dxD ; - : ) ) )
Wt eR is the embedding matrix £(8) = WPred (WY WER) Attn(X) + bPred
* Foreachwordin1..D

‘f

1.

* Pick the corresponding column in WE
* Get a d-dimensional word embedding

* Weight tie with WP"¢4 (common implementation?)

(X) — (WE)T(WVWEX) Attention()?) + ppred ¢ RDXN

13
Ofir Press and Lior Wolf. Using the output embedding to improve language models. 2017



Model architecture: single-layer transtormer

. f()?) — (WE)T(WVWEX) Attn(}?) 1+ bp‘red « D:vocabulary size

* d:embedding dimension

* Topic structure can be encoded in many * (usually:d < D)
 N:sequence length
places . 7 RN
e Embedding layer WE + wrred e RPX4

V . pred D
e Self-attention WY, Attn(X) bPTee € R

e Our simplification: study the above two cases |  f(X) = WP4{(WYWEX) Aten(X) + bPre
separately

* Main result 1 (word embedding)
* Main result 2 (self-attention)

14



Result: embeddings encode top|c structure

e Theorem (informal): when fixing Attn(X) D: vocabulary size
vV  d: embedding dimension
to uniform attention and WV to identity, . (usually: d < D)
the optimal embedding layer WE satisfies + N: sequence length
« ZeRVN
T . .
« E == WE WEis block-wise . wrred € RPX
o bpred € [RD
* Ejj is larger when words i and j belong to » v: number of words in each topic
the same tOpiC * Dm, Pe Dr: controls masking probabilities
~ their embeddings are more similar f(X) = WE)T(WVWEX) Attn(X) + bPred

* Ejj is smaller when words iand j belong to
the different topics “
~ their embeddings are more different

* The avg difference (same topic - diff topic)

U(l o (1 o pc)pm)
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Result: embeddings encode topic structure

* The dot product of the embeddings of two
word is

* larger if the two words belong to the same
topic, and

* smaller if they belong to different topics

* In this figure, the nine words fall into three
topics:
* Animals: frog, toad, lizard
* Musicians: mozart, beethoven, schubert
* Mathematics: algebra, arithmetic, calculus

16



Result: embeddings encode topic structure

* The dot product of the embeddings of
two word is

* |arger if the two words belong to the
same topic, and

* smaller if they belong to different topics

e Same holds for model trained on
synthetic data generated by LDA
* 10 topics
* 10 words in each topic
e Theory: fix Attn(X) and WV
* This figure: all components are trained

* Block pattern depends on optimization
algorithm and loss function

e Can be less clean, see Figure 1 in our paper

17



Next step: results for other layers

e Question: what is the role of other layers in learning topic structures?
* In particular, what does the attention layer learn?

* We isolate the roles of embeddings and attention by considering the
following question

* What does the attention layer learn without the help of embeddings?
 Namely, we freeze the embedding to be one-hot

18



The two-stage optimization process

 However, end-to-end gradient descent learning dynamics of
transformers involves very complicated calculations

* Can we avoid them but still gain insights into the optimization process?

* Empirical observation
e With careful initialization
 When all weights are jointly trained (using SGD or Adam)
* The optimization process can be approximately broken down into two stages

(W*Z)T(W°Z)

New

f(Z) = Wp’"ed(WVZ)a( ) + prred

19



Observation: two-stage optimization process

* In Stage 1 (steps 0-400) . Wi
* [IWHlg WO = 0 6
 ||IWV]|r increases significantly
e Our simplification for theory: freeze WX and

Weto0

* I[n Stage 2 (steps 400-1000),

o ITWX]|g, IWQ||g start increasing significantly
 while [|[WVY||r stays relatively flat
* Note: WV does not stop changing

e Our simplification for theory: freeze WV to the
Stage 1 optima above

0 200 400 600 800 1k

=
o N M OO ® ON

200 400 600 800 1k

600 800 1k



Observation: two-stage optimization process

||Wk||_F (layer 0)

15

0.5

100

200

300

[IWq|_F (layer 0)

100

400

200 300 400
||Wv||_F (layer 0)
s
Step
200 300 400

100

[|Wk||_F (layer 1)

1.4 -
1.2 .
1
0.8
0.6
0.4
02 Ste
5 P
300 400
[[Wql|_F (layer 1)
[/5 Step
300 400
[|Wv||_F (layer 1)
15 -
1
0.5
Step
0
0 100 200 300 400

1.2

0.8
0.6
0.4
0.2

1.2
0.8
0.6

0.4
0.2

15

0.5

[|Wk||_F (layer 2)

100

100

Step
200 300 400
||Waq|_F (layer 2)
Step
200 300 400
||Wv||_F (layer 2)
Step
200 300 400

100

15

0.5

15

0.5

15

0.5

||Wk||_F (layer 3)

J ¥

300 400

||Wql|_F (layer 3)

/

Step

100 200 300 400

||Wv||_F (layer 3)

—T =

Step

100 200 300 400



Intuition: two-stage optimization process

° WK’ WQ} WV — WVZ Attn(/ e D:vocabulary size
g( ) S_ ) ( )  d: embedding dimension
wkKz w@z e (usually:d < D)
¢ Attn(Z) = 0 ( ) ( ) * N:sequence length
JVda « Z=WFX e RPN

° Wpred = RDxd
° bpred € RD
° VWK (g) contains the term WQ e v:number of words in each topic
cie e . . ., Do, Pr-: controls masking probabilities
e Initialization: WX = 0, W@ = 0 P Pe Pr &P

* SoVyx(g) = 0 £(8) = WEYT(WYWEX) Attn(K) + bPred

* g:softmax (each column sums up to 1)

 So WX stays ~ 0 for a long time
e Similar for W¢

* Does not apply to W":V,,v(g)contains Attn(Z)
e Attn(Z) isnot=0

22



The two-stage optimization process

 However, end-to-end gradient descent learning dynamics of
transformers involves very complicated calculations

* Can we avoid them but still gain insights into the optimization process?

* Empirical observation
e With careful initialization
* When all weights are jointly trained (using SGD or Adam)
* The optimization process can be approximately broken down into two stages

e Our approach

* For Stage 1 (convex), we characterize the optima, which also implies
guarantees for training dynamics

* For Stage 2 (non-convex), we only characterize the optima (no guarantee for
training dynamics)
23



Stage 1 result: WY encodes topic structure

D: vocabulary size

d: embedding dimension
(usually: d < D)

N: sequence length

 Theorem (informal): with one-hot .
« Ze RPN

embedding, fixing Attn(X) to uniform
attention, the optimal WV is block-wise

Wpred = RDxd

bpred € RD

v: number of words in each topic

Pm, Pe, Pr: CcONtrols masking probabilities

» WV, is larger when words i and j belong
to the same topic

* WV, is smaller when words i and j belong

to the different topics F) = (WEYT(WYWER) Aten(R) 4 b
* The avg difference (same topic - diff topic) |

U(l o (1 o pc)pm)
* Weight decay makes the optima unique

* w/0 weight decay: not strongly convex
24
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Stage 2 question: behavior of attention

« Z e RPN
* Q: Fixing WYV at Stage 1 optima, what is the . m}/opdd € I%DXd
optimal Attn(Z) ? + P ER

[lWk]|_F

T f(X) = WE)T(WYWEX) Attn(X) + brre?
. _ _[W¥z) (woz)
Attn(Z) = 0( o

e g: RV*N = (0,1)V*N: column-wise softmax

exp(4;j)
(] O'(A)i] — N l] 0 200 400
Zl=1 exp (Alj) lIwql_F

* The “attention score” that word j pays to word |

* Q: Do words typically pay more attention to
other words of the same topic?
* i.e.is g (A);; typically larger
* when topic(wi) = topic(wj)
* or when topic(wi) # topic(wj) ?




Stage 2 simplification: tying attention scores

* Masked documentw = wy, ..., Wy
* Attn(X);; is the attention that w; pays to w;
¢ Attn(X)U —

* 1 if W; = W]

* ¢y if w; # w; but topic(w;) = topic(w;)

* c3 if topic(w;) # topic(w;)

* Q: Are ¢ and ¢, greater than c5 in the optimal attention?

* Q: Are a and 8 greater than 1 in the optimal attention?

26



Stage 2 result: attention encodes topic structure

e Theorem (informal): with one-hot embedding,

when fixing WY at stage 1 optima,

* the optimal attention scores are topic-wise

v—1

. Intumon:
e v: number of words per topic
e T: number of topics per document

T: total number of topics
a4t ,B avg same-topic / diff-topic

v
e “avg” in the sense of frequency

* 14, A, are constants
* More topics per doc (i.e. larger 1) =

e each word needs to focus more on other same-topic words

« Attn(X);; =
¢ ifw; =w
* ¢y ifw; # wj but topic(w;) =
topic(w;)
* 3 if topic(w;) # topic(w;)
s o= i—i(same-topic-diff-word attn / diff-
topic attn)
« B = E—: (same-word attn / diff-topic attn)

Optimizer and | Avg Same-Word Avg Same-Topic- Avg Different-Topic
Learning Rate Attention -Different-Word Attention Attention
Adam 0.003 0.00759 + 0.00171 0.0108 4+ 0.000657 0.00689 + 0.000160
Adam 0.01 0.00811 + 0.000705 0.010 £ 0.000392 0.00707 + 0.000178
Adam 0.03 0.00453 + 0.000346 0.0116 4+ 0.000460 0.00665 + 0.000200
SGD 0.01 0.0105 0.0106 0.00673
SGD 0.03 0.0140 + 0.00158 0.0103 4+ 0.000357 0.00641 + 0.0000239
27



Experiment setting on Wikipedia® dataset

* Topic model: run online LDA? for 6 passes

 Ambiguity filtering
e Theory (synthetic setting): topics don’t overlap, i.e. each word belongs to 1 topic

* Experiment

* Remove “stop tokens”
* For each topic, keep the “most representative words”
* i.e.0.05%, 0.1%, or 0.2% of all words with highest P(word | this topic) in the fitted LDA

* Will show results when enforcing no overlap between topics (= theory)
e Also, results when topics can overlap (# theory)

* Transformer models
e Pre-trained Bert (closest to theoretical setting)
e Pre-trained Albert, Bart, Electra, Roberta (# theory)
 Randomly-initialized Bert (expect no topic structure)

28
1. Wikimedia Foundation. URL https://dumps.wikimedia.org. 2. Matthew Hoffman et al. Online Learning for Latent Dirichlet Allocation. 2010.



Experiment result on Wikipedia dataset

Model Ambiguity Avg embedding Avg embedding Avg attn weight topics
Threshold Cosine Similarity Dot Product (Same-topic don’t
(Same-topic/Diff-topic) (Same-topic/Diff-topic) /Diff-topic) overlap
Bert 0.0005 1.21 1.19 1.32 (= theory)
0.001 1.13 1.15 1.28
0.002 1.11 1.13 1.22
Albert 0.0005 5.64 6.29 1.33
0.001 4.18 3.74 1.28
0.002 3.24 2.93 1.22
Bart 0.0005 2.80 2.67 1.35
0.001 1.95 1.92 1.31
0.002 1.63 1.62 1.23
Electra 0.0005 5.98 5.37 2.14
0.001 7.70 7.35 2.09
0.002 7.46 8.08 1.95
Roberta 0.0005 6.44 6.81 1.40
0.001 5.73 6.31 1.31
0.002 5.24 5.30 1.22
Bert 0.0005 1.00080 1.00063 0.99943
(randomly 0.001 0.99974 1.00036 0.99996
initialized) 0.002 1.00016 1.00027 1.00007 29




Experiment result on Wikipedia dataset

topics can
overlap
(# theory)

Model Ambiguity Avg embedding Avg embedding Avg attn weight
Threshold Cosine Similarity Dot Product (Same-topic
(Same-topic/Diff-topic) (Same-topic/Diff-topic) /Diff-topic)
Bert 0.0005 1.14 1.04 1.23
0.001 0.97 1.05 1217
0.002 0.99 0.93 113
Albert 0.0005 4.15 3.06 1.23
0.001 3.09 3.04 G b
0.002 1.54 1.44 1.11
Bart 0.0005 2.51 1.76 1.27
0.001 1.63 1.12 1.20
0.002 1.06 0.85 1:11
Electra 0.0005 5.28 3.99 1.70
0.001 5.56 5.57 1.58
0.002 6.39 5.61 1.48
Roberta 0.0005 4.39 5.01 1.19
0.001 5.20 4.25 1.15
0.002 4.71 4.15 1.12
Bert 0.0005 0.99814 0.99957 1.00009
(randomly 0.001 0.99820 1.00167 1.00013
initialized) 0.002 0.99964 0.99928 0.99978
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Interesting future directions

* Analyzing optimization beyond the two-stage ’;
assumption

e Two stage: simplified the early optimization process
Learning of (simple) topic structure: V| : -
Other finer-grained data properties: ? ° :
What happens after this early process: ? 2
Two-stage phenomenon: sensitive to hyper-params
Common default hyperparameters: not visibly two-stage °: 2

Interaction between different components (jointly trained): ?

=

* Apply similar methodology to other distributions
* Topic model: one aspect of semantics: V|

o ?

Other as;)ects of semantics: ¢ oo {“3; A % f\)
¢ SyntaX. . \(/ 3 (2 3 ‘(—)-’ ( o
e Ongoing work: the Dyck grammar, coming soon! v 4 3 X X



Summary

e Data: topic modeling: Latent Dirichlet allocation (LDA)
* Model architecture: a single-layer transformer (no FFN, no layer norm)
* Pre-training task: masked language modeling

* Analyzing optimization process

The early training process can be approximately broken down into two stages
Stage 1 is convex, stage 2 is not

We characterize the optima of the training objective in each stage

Since stage 1 is convex => training dynamics convergence guarantee for stage 1
These optima intuitively captures the topic structures in the data distribution

* Theory is also predictive of multi-layer multi-head transformers trained on
Wikipedia data
Contact: yuchenl4@cs.cmu.edu
https://arxiv.org/abs/2303.04245 (to appear in ICML 2023) .



