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Background: verifier-assisted language generation
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Overview of our results

3

Key takeaway: constrained language generation without a verifier is 
provably hard, but verifiers (which check partial outputs) can help.

Theoretical framework

Constrained generation task

Information-theoretic lower bound

Computational lower bound

Empirical study
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Setup: constrained generation task
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Autoregressive generator oracle 𝒪: given string s ∈ Σ∗, predict 
and sample from next-token distribution 𝒪 𝑠 : Σ → ℝ".

Constrained generation task Σ, 𝐴, 𝒪 : find s ∈ 𝐴 s.t. 𝑃𝒪 𝑠 > 0.
If no such s exists, return FAIL.

• Σ: vocabulary
• 𝒪: autoregressive 

generator oracle
• 𝑃𝒪: Σ∗ → ℝ": 

distribution over 
strings predicted 
by 𝒪

• 𝐴 ⊂ Σ∗: 
constraint set

Oracle complexity: expected number of calls to 𝒪 to solve the 
constrained generation task 



Constrained generation is hard without a verifier
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Theorem 1 (information-theoretic lower bound, informal): 
There exists a constrained generation task for which any (possibly randomized) 
algorithm has (expected) oracle complexity at least exponential in seq length.

Theorem 2 (computational lower bound , informal): 
There exists a constrained generation task which is NP-hard.



Incorporating verifiers into constrained generation
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Verifier 𝑉: Σ∗ → 0,1 : ∀s ∈ Σ∗, 𝑉 𝑠 = 1 if and only if ∃𝑠$ ∈ Σ∗
s.t. 𝑠 ∘ 𝑠$ ∈ 𝐴.

Rejection sampling: repeatedly generating complete strings s
according to 𝑃𝒪, until 𝑉 𝑠 = 1.

• Σ: vocabulary
• 𝒪: autoregressive 

generator oracle
• 𝑃𝒪: Σ∗ → ℝ": 

distribution over 
strings predicted 
by 𝒪

• 𝐴 ⊂ Σ∗: 
constraint set

• 𝑉: verifier
• ∘: concatenation 

of strings
• 𝑄: backtrack 

quota
• 𝐵: stride

Tokenwise rejection sampling: given prefix s, sample next 
token t~𝒪 𝑠 , until 𝑉 𝑠 ∘ 𝑡 = 1, then proceed to next token.
• Backtrack: additionally, whenever 𝑉 𝑠 ∘ 𝑡 = 0, resample 

the last 𝐵 positions of s (allowed ≤ 𝑄 times)



Tokenwise rejection sampling is efficient
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• Σ: vocabulary
• 𝒪: autoregressive 

generator oracle
• 𝑃𝒪: Σ∗ → ℝ": 

distribution over 
strings predicted 
by 𝒪

• 𝐴 ⊂ Σ∗: 
constraint set

• 𝑉: verifier
• ∘: concatenation 

of strings

Proposition 1 (informal): there exists a constrained 
generation task s.t.
• The expected oracle complexity of rejection sampling is 

exponential in seq length, and
• The expected oracle complexity of tokenwise rejection 

sampling is linear in seq length.



• Constrained generation task: given a prefix, generate a 

completion to form a valid Dyck grammar string

• Dyck grammar constraints 𝐴: language of balanced parentheses

• Generator 𝒪: pre-train an autoregressive Transformer from 

scratch on Dyck grammar strings

• Verifier 𝑉: one-layer MLP trained from scratch for binary 

classification

• Feature = generator representation of a prefix

• Label = 1 if the prefix is grammatical, 0 otherwise
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Experiment 1: generating strings in Dyck grammar
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Experiment 1: generating strings in Dyck grammar

• 𝑄: backtrack 
quota

• 𝐵: stride
• top_p: controls 

nucleus sampling 
truncation

Tokenwise rejection sampling with backtracking reduces completion errors



• Constrained generation task: given the codes for a simple Python function (i.e. list 

append), generate test cases (assert statements)

• Eval metric: distinct accuracy 𝐴𝑐𝑐%&'(&)*(: the number of distinct correct test 

cases generated, divided by the total number requested

• Generator 𝒪: pre-trained CodeLlama1

• Verifier 𝑉: one-layer MLP for binary classification

• Feature = generator representation of a prefix

• Label = 1 if the prefix is grammatical, 0 otherwise
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Experiment 2: generating Python test cases

1. Baptiste Rozière et al, 2023, Code Llama: Open Foundation Models for Code
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Experiment 2: generating Python test cases
• 𝑄: backtrack 

quota
• 𝐵: stride
• top_p: controls 

nucleus sampling 
truncation

• 𝑇: sampling 
temperature

• block BoN: block 
best-of-N 
(baseline)

Tokenwise rejection sampling with backtracking improves distinct accuracy
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Experiment 2: generating Python test cases

Tokenwise rejection sampling with backtracking improves query efficiency

• Orange: Tokenwise rejection 
sampling with backtrack

• Blue: baselines, including 
various nucleus sampling 
top_p, sampling temperature 
𝑇, and block best-of-N



Summary
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Key takeaway: constrained language generation without a verifier is 
provably hard, but verifiers (which check partial outputs) can help

Theory: query complexity, information-theoretic and computational lower bound

Experiments: Tokenwise rejection sampling with backtracking improves accuracy, 
diversity, and query efficiency for generating Dyck grammar and Python test cases

Contact: yuchenl4@cs.cmu.edu
https://arxiv.org/abs/2502.12123 (ICML 2025)

Open questions for future work:
1. Theory when verifiers are imperfect
2. Maintaining calibration of the distribution of elements in the constrained support


