
On the Query Complexity of Verifier-Assisted
Language Generation

1

Yuchen Li1

(1Carnegie Mellon University 2Microsoft Research NYC)

https://arxiv.org/abs/2502.12123 (ICML 2025)

Aashay Mehta1 Andrej Risteski1Edoardo Botta1 Jordan T. Ash2 Cyril Zhang2

Background: verifier-assisted language generation

2

language
model

generator

Karl Cobbe et al, 2021, Training Verifiers to Solve Math Word Problems

prompt

candidate 1 candidate N……

verifier

output

Figure on the right: Jason Wei et al, 2025, BrowseComp

Overview of our results

3

Key takeaway: constrained language generation without a verifier is
provably hard, but verifiers (which check partial outputs) can help.

Theoretical framework

Constrained generation task

Information-theoretic lower bound

Computational lower bound

Empirical study

[] () [()]

[) (] [(])

valid

invalid

([{ }])

([]

Setup: constrained generation task

4

Autoregressive generator oracle 𝒪: given string s ∈ Σ∗, predict
and sample from next-token distribution 𝒪 𝑠 : Σ → ℝ".

Constrained generation task Σ, 𝐴, 𝒪 : find s ∈ 𝐴 s.t. 𝑃𝒪 𝑠 > 0.
If no such s exists, return FAIL.

• Σ: vocabulary
• 𝒪: autoregressive

generator oracle
• 𝑃𝒪: Σ∗ → ℝ":

distribution over
strings predicted
by 𝒪

• 𝐴 ⊂ Σ∗:
constraint set

Oracle complexity: expected number of calls to 𝒪 to solve the
constrained generation task

Constrained generation is hard without a verifier

5

Theorem 1 (information-theoretic lower bound, informal):
There exists a constrained generation task for which any (possibly randomized)
algorithm has (expected) oracle complexity at least exponential in seq length.

Theorem 2 (computational lower bound , informal):
There exists a constrained generation task which is NP-hard.

Incorporating verifiers into constrained generation

6

Verifier 𝑉: Σ∗ → 0,1 : ∀s ∈ Σ∗, 𝑉 𝑠 = 1 if and only if ∃𝑠$ ∈ Σ∗
s.t. 𝑠 ∘ 𝑠$ ∈ 𝐴.

Rejection sampling: repeatedly generating complete strings s
according to 𝑃𝒪, until 𝑉 𝑠 = 1.

• Σ: vocabulary
• 𝒪: autoregressive

generator oracle
• 𝑃𝒪: Σ∗ → ℝ":

distribution over
strings predicted
by 𝒪

• 𝐴 ⊂ Σ∗:
constraint set

• 𝑉: verifier
• ∘: concatenation

of strings
• 𝑄: backtrack

quota
• 𝐵: stride

Tokenwise rejection sampling: given prefix s, sample next
token t~𝒪 𝑠 , until 𝑉 𝑠 ∘ 𝑡 = 1, then proceed to next token.
• Backtrack: additionally, whenever 𝑉 𝑠 ∘ 𝑡 = 0, resample

the last 𝐵 positions of s (allowed ≤ 𝑄 times)

Tokenwise rejection sampling is efficient

7

• Σ: vocabulary
• 𝒪: autoregressive

generator oracle
• 𝑃𝒪: Σ∗ → ℝ":

distribution over
strings predicted
by 𝒪

• 𝐴 ⊂ Σ∗:
constraint set

• 𝑉: verifier
• ∘: concatenation

of strings

Proposition 1 (informal): there exists a constrained
generation task s.t.
• The expected oracle complexity of rejection sampling is

exponential in seq length, and
• The expected oracle complexity of tokenwise rejection

sampling is linear in seq length.

• Constrained generation task: given a prefix, generate a

completion to form a valid Dyck grammar string

• Dyck grammar constraints 𝐴: language of balanced parentheses

• Generator 𝒪: pre-train an autoregressive Transformer from

scratch on Dyck grammar strings

• Verifier 𝑉: one-layer MLP trained from scratch for binary

classification

• Feature = generator representation of a prefix

• Label = 1 if the prefix is grammatical, 0 otherwise

[] () [()]

[) (] [(])

valid

invalid

([{ }])

([]

8

Experiment 1: generating strings in Dyck grammar

9

Experiment 1: generating strings in Dyck grammar

• 𝑄: backtrack
quota

• 𝐵: stride
• top_p: controls

nucleus sampling
truncation

Tokenwise rejection sampling with backtracking reduces completion errors

• Constrained generation task: given the codes for a simple Python function (i.e. list

append), generate test cases (assert statements)

• Eval metric: distinct accuracy 𝐴𝑐𝑐%&'(&)*(: the number of distinct correct test

cases generated, divided by the total number requested

• Generator 𝒪: pre-trained CodeLlama1

• Verifier 𝑉: one-layer MLP for binary classification

• Feature = generator representation of a prefix

• Label = 1 if the prefix is grammatical, 0 otherwise

10

Experiment 2: generating Python test cases

1. Baptiste Rozière et al, 2023, Code Llama: Open Foundation Models for Code

11

Experiment 2: generating Python test cases
• 𝑄: backtrack

quota
• 𝐵: stride
• top_p: controls

nucleus sampling
truncation

• 𝑇: sampling
temperature

• block BoN: block
best-of-N
(baseline)

Tokenwise rejection sampling with backtracking improves distinct accuracy

12

Experiment 2: generating Python test cases

Tokenwise rejection sampling with backtracking improves query efficiency

• Orange: Tokenwise rejection
sampling with backtrack

• Blue: baselines, including
various nucleus sampling
top_p, sampling temperature
𝑇, and block best-of-N

Summary

13

Key takeaway: constrained language generation without a verifier is
provably hard, but verifiers (which check partial outputs) can help

Theory: query complexity, information-theoretic and computational lower bound

Experiments: Tokenwise rejection sampling with backtracking improves accuracy,
diversity, and query efficiency for generating Dyck grammar and Python test cases

Contact: yuchenl4@cs.cmu.edu
https://arxiv.org/abs/2502.12123 (ICML 2025)

Open questions for future work:
1. Theory when verifiers are imperfect
2. Maintaining calibration of the distribution of elements in the constrained support

